Comment les plantes communiquent-elles sous terre ?

 Jeudi 4 Juillet 2024

Le verbe communiquer a plusieurs sens, nous adoptons ici celui de transmettre quelque chose car il est souvent difficile de mettre en évidence, chez les plantes, que les signaux qui sont transmis sont utilisés par le récepteur potentiel. Ce sujet a fait l’objet d’une mise au point* de laquelle nous extrayons les principales idées.

Sous terre la communication peut se faire de deux manières : par des émissions chimiques présentes dans les exsudats racinaires ou par l’intermédiaire de champignons mycorhiziens qui vivent en symbiose sur les racines de certaines espèces mais qui, par leur réseau d’hyphes, peuvent atteindre les racines voisines de la même espèce ou celles d’autres espèces.

Les émissions chimiques racinaires vont être transportées par le substrat du sol d’une racine à l’autre. Si les racines qui se côtoient appartiennent à des plantes de la même espèce, le signal chimique émis par l’une d’entre elles, suite à un stress biotique ou abiotique auquel elle  est soumise, peut entraîner une réponse de défense rapide dans toute la population. S’il s’agit d’espèces différentes, ces émissions vont réguler la compétition qui s’exerce entre elles ou l’aggraver. Les molécules qui sont présentes dans les exsudats racinaires sont des composés organiques (métabolites secondaires le plus souvent) dont on ne sait réellement ni leur persistance dans le sol ni leur étendue de diffusion, mais ils peuvent inhiber la croissance des compétiteurs, activer les systèmes de défense ou favoriser le transfert des éléments nutritifs. Cependant peu de composés chimiques ayant ces propriétés ont été caractérisés, on connait les strigolactones chez le pois, la L DOPA chez la fève, un caroténoïde chez l’arabette.

Les réseaux d’hyphes de champignons mycorhiziens peuvent aussi assurer des jonctions entre les racines de plusieurs plantes ; si cette liaison symbiotique permet à la plante de recevoir des éléments minéraux (azote, phosphore) puisés dans le sol par le champignon, et au champignon de recevoir des molécules énergétiques (sucres) issus de la photosynthèse végétale, elle est aussi un lien de passage d’informations, de plante à plante,  sur la disponibilité nutritive, sur la présence de parasites, ou sur la situation environnementale. On a pu montrer ainsi qu’un plant de fève attaqué par des pucerons induit une réponse défensive chez les plantes de fève voisines, grâce à la transmission d’un signal par les hyphes mycorhiziennes.

L’émission de substances racinaires va influencer la composition de la flore présente sur le sol. Certaines substances émises pouvant être inhibitrices du développement des racines d’autres espèces ou au contraire stimulantes par des apports nutritifs. La flore présente sur un sol n’est que le résultat d’un équilibre précaire car il est continuellement remanié.

L’étude des exsudats racinaires est compliquée ; ils sont présents en faibles quantités, leur prélèvement ne peut se faire qu’en conditions artificielles (croissance des racines sur des milieux artificiels dont la composition est connue) ce qui questionne sur la similarité des substances obtenues à celles qui sont émises en milieu naturel. Leur connaissance est un sujet qui va se développer.

 

* E. Guerrieri et S. Rasmann, Science, 19 avril 2024, N°6693, pp. 272-273.

Les nutriments.

Jeudi 6 Juin 2024


En plus de l’énergie qui sera utilisée pour toute l’activité métabolique des plantes, la photosynthèse leur fournit trois atomes : le carbone, l’hydrogène et l’oxygène, présents dans les sucres. Ces derniers constituent les «briques de la vie » car ils peuvent servir à élaborer des polymères présents dans les parois (celluloses, pectines) ou dans les réserves (amidon, graisses, huiles). Ces trois atomes ne sont pas suffisants pour réaliser un être vivant, ils vont se combiner à l’azote, le phosphore, le soufre et le magnésium, le calcium le potassium et le fer pour donner protéines, acides aminés, pigments et métabolites secondaires. Ces six éléments sont indispensables au développement de la plante, ce sont des nutriments. D’autres comme le bore, le cuivre, le zinc le molybdène sont nécessaires en très faibles quantités ce sont des éléments traces ; leur absence peut induire chez la plante des carences.

Où trouve-t-on ces nutriments dans la plante ?

- L’azote et le phosphore sont constitutifs des acides nucléiques (ADN  et ARN).

- Le Phosphore est un constitutif de l’ADN, de plus il est présent dans les transporteurs d’énergie : Adénosine di et triphosphate (ATP et ADP). -

- Le soufre entre dans la composition de trois acides aminés essentiels (cystéine, cystine et méthionine), c’est donc un constituant structurel des protéines.

- Le magnésium est un composant de la chlorophylle et est impliqué aussi dans le fonctionnement de certaines enzymes.

- Le Calcium est un constituant de la paroi squelettique des cellules végétales.

- Le potassium joue un rôle fondamental dans l’équilibre électrolytique et aqueux de la cellule végétale, il intervient sous forme ionique (PO43-)  dans la régulation de la croissance, dans la synthèse des protéines, l’ouverture des stomates.

Le fer est un élément constitutif des cytochromes transporteur d’électrons dans la respiration.

Ces éléments sont présents dans le sol sous forme de sels peu solubles qui se dissocient partiellement dans l’eau en ions solubles. C’est sous cette forme qu’ils sont absorbés par les racines. L’azote est absorbable sous forme d’ions ammonium NH4+ ou d’ion nitrate NO3-, le phosphore sous forme d’ions phosphate PO43-, le soufre sous forme d’ions sulfate SO42+, le Calcium et le potassium  sous forme d’ions Calcium Ca+ et P+, la disponibilité de ces nutriments dépend de l’acidité, de la température et de la présence d’autres éléments dans l’eau du sol.

 

L’absorption d’un élément par la plante est fonction de sa concentration dans l’eau du sol, si cette concentration est élevée, l’absorption par les racines se fait simplement par diffusion, si elle est faible les racines transportent activement l’élément à travers leur surface racinaire et le concentrent à l’intérieur de l’enveloppe, cette activité est énergie dépendante. En définitive la demande d’un nutriment par la croissance de la plante peut-être supérieure à sa présence dans l’eau du sol ; si cette demande n’est pas satisfaite la croissance ne sera pas optimale. C’est ainsi qu’un sol pauvre produit moins qu’un sol riche.        

Où trouve-t-on les espèces végétales qui nous sont utiles ?

Mardi 7 Mai 2024


Les espèces végétales que nous utilisons sont rarement endémiques, dans les bois ou les landes que nous laissons sans cultures. D’où viennent-elles alors ? Sont-elles plus fréquentes dans les zones où la biodiversité est la plus forte ou au contraire sont-elles présentes dans des zones spécifiques ?

C’est ce que des Chercheurs* ont essayé de découvrir. Pour cela, ils ont puisé leurs informations dans 12 bases de données qui font un relevé des espèces présentes dans différentes zones de la planète mais aussi renseignent sur leur utilisation ; ils ont pu ainsi cataloguer 37687 plantes utilisées par les êtres humains et situer leur position géographique.

D’une manière globale, les auteurs ont observé que les espèces utiles sont en plus forte concentration dans les tropiques et que leur gradient de densité décroit vers les latitudes croissantes. Cette répartition est en concordance avec la variation de la diversité totale des plantes. Bien que plusieurs zones tempérées peuvent en contenir en grande quantité, soit natives (Chine Himalaya), soit introduites (Europe occidentale, Est des Etats Unis). Ils ont observé aussi que dans les zones riches en espèces utiles elles y sont aussi présentes à l’état endémique ; au contraire la concentration à l’état endémique est relativement faible dans les zones tempérées.    

Ce matériel brut a été réparti en 10 catégories d’usages : nourriture humaine (incluant boissons et additifs), nourriture pour les vertébrés (fourrages), nourriture pour les invertébrés (abeilles et les vers à soie), matériaux (bois fibres), combustibles (charbon, alcool), usages sociaux (narcotiques, parfums), poisons (pour vertébrés et invertébrés), médecine (humaine et vétérinaire), usage pour l’environnement (haies brise vents, fleurs), source de gènes. Les auteurs montrent que chacun de ces dix groupes a la même distribution latitudinale : densité forte au niveau des tropiques, décroissance vers les latitudes élevées. La diversité des espèces utilisées en culture est en corrélation avec la richesse totale en plantes mais aussi avec la richesse en plantes utiles, autrement dit dans un milieu naturel riche en plantes diverses les agriculteurs utilisent beaucoup de plantes utiles et  plus encore si le milieu naturel est riche en celles-ci.

Les peuples indigènes qui dépendent beaucoup des espèces sauvages pour leur nourriture, vivent paradoxalement dans des zones qui ne contiennent pas une haute densité d’espèces utiles. Cela pourrait s’expliquer par le fait qu’ils auraient été dépossédés, au cours de l’histoire, de leurs terres d’origine.

Le réseau des zones protégées qui couvre actuellement 17% des surfaces terrestres ne contribue paradoxalement qu’à la conservation d’une faible biodiversité totale ; en outre il ne contient pas davantage d’espèces végétales utiles. Pour les auteurs il sera nécessaire, dans les futures réservations, de tenir compte de leur richesse botanique mais aussi de leur richesse en plantes utiles.

Il faut retenir de cette publication le nombre extrêmement élevés d’espèces utiles aux êtres humains (37687), leur répartition qui est la même que celle de toutes les espèces végétales (il n’y a pas de zones où elles seraient plus nombreuses) enfin leur présence insuffisante dans les zones protégées.

 

*S. Pironon et al. Science 19 janvier 2024, N°6680, pp.293-297.       

Quel peut-être l'effet du réchauffement climatique sur nos forêts humides ?

Vendredi 5 Avril 2024


Le changement climatique va affecter nos forêts humides tempérées ; quelles sont celles qui risquent d’être le plus fortement affectées par un climat plus chaud et plus sec ? Une étude*nous donne quelques clés pour connaître les zones forestières les plus sensibles ; elle tente de faire des prévisions sur leur évolution jusqu’à l’an 2100.

Une question importante, jusqu’ici non tranchée, à laquelle il faut aussi répondre est celle-ci : les forêts qui poussent déjà sur des zones sèches seront-elles plus vulnérables, parce qu’exposées au-delà de leurs limites physiologiques, que les forêts dites naïves installées dans des zones plus humides ?

Pour mesurer la sensibilité des arbres aux fluctuations météorologiques les auteurs se sont appuyés sur les données de la banque Internationale de données sur les cernes des arbres (ITRDB) et celles du service forestier des Etats unis (FIA). A partir de ces données ils ont pu générer un indice de largeur des cernes qui donne une mesure annuelle de la croissance des arbres. Le temps et le climat ont été caractérisés par l’évapotranspiration potentielle et le déficit hydrique climatique relevés localement par ces organismes. L’évapotranspiration potentielle décrit la demande atmosphérique en eau produite par évaporation et transpiration des plantes, cette dernière est fonction de leur disponibilité en énergie. Le déficit hydrique climatique mesure le déficit en eau par rapport à la demande atmosphérique.

La plupart des relevés de l’ITRDB et du FIA montrent :

- Qu’il y a eu une réponse positive à la croissance des arbres lorsqu’il y a eu une plus grande quantité d’eau ou d’énergie disponibles sur le site.

- Les arbres situés sur les zones les plus sèches (déficit hydrique élevé) de l’écart climatique où vit l’espèce ont une croissance moins affectée par la sècheresse que ceux situés dans les zones plus humides. Les forêts naïves sont donc plus sensibles à la sècheresse.

- Les arbres ont aussi montré une hétérogénéité de réponse à une croissance annuelle de l’énergie disponible (augmentation de l’évapotranspiration).

En 2100, avec le réchauffement climatique, les forêts tempérées vont être exposés à des températures plus élevées et à une sècheresse plus forte que de nos jours. En estimant la variation du déficit hydrique et de l’évapotranspiration potentielle à partir des changements climatiques, la croissance des arbres devrait, selon les auteurs, diminuer de 10,4 %. Nos forêts vont subir ainsi une dégradation de leur état sanitaire et une réduction de leur capacité à séquestrer le carbone.

Les projections de changement de l’index de largeur des cernes en 2100, montrent que le réchauffement climatique aura un impact négatif prononcé sur les arbres qui poussent dans les zones humides chaudes alors qu’il sera plus faible dans les marges plus froides et plus sèches de la zone d’adaptation de l’espèce. La réduction de croissance des arbres serait de 17,2% dans le premier cas, et seulement de 11% dans le second.

Ce comportement positif des arbres qui vivent dans les marges plus froides et plus sèches est à attribuer à l’hétérogénéité de l’espèce. Ces individus ont été exposés sur plusieurs générations à des conditions plus sèches et plus froides et ont acquis par sélection naturelle certains caractères de résistance. De ce fait ils pourraient être utiles, en migration assistée, vers des régions plus humides qui devraient, suite au réchauffement climatique, devenir plus sèches.

 

* Robert Heilmayr et al. Science, 8 décembre 2023, N°6675, pp.1171-1177      

Quelques éléments pour comprendre la démographie.

 Mardi 5 Mars 2024

 La démographie est l’étude quantitative de l’évolution des populations humaines, mais ses méthodes peuvent aussi être appliquées à d’autres espèces. C’est une science complexe qui fait appel aux mathématiques supérieures (calcul des probabilités, calcul intégral) d’où le rejet qu’elle suscite à beaucoup d’entre nous. Peut-on, sans être un mathématicien avancé, en tirer la « substantifique moelle » ? Ce sera la tentative de ce billet.

La notion la plus simple à comprendre est celle de la croissance d’une population. Si :

        - P0 est l’effectif de la population au temps T0

          - P1 est l’effectif de la population au temps T1

        - N le nombre de naissances entre  T0 et T1

          - D le nombre (Nb) de décès entre T0 et T1

        - SM le solde migratoire (Nb d’immigrés moins Nb d’émigrés entre T0 et T1)

 On a :                 P1-P0 = N-D +SM

Si T1-T0 = 1 an,  la croissance annuelle de la population française par exemple est facilement calculable puisque l’on peut connaître chaque année, à partir des relevés des états civils : le nombre de naissances N, le nombre de décès D ; et que immigration et émigration SM font aussi l’objet de documents de contrôle. Cette croissance devrait être publiée chaque année par les médias en détaillant le nombre de naissances, de décès, le nombre d’immigrés et d’émigrés ; malheureusement le nombre réel d’immigrés n’est pas connu car une immigration incontrôlée existe et ne peut figurer dans les chiffres.

Mesurer la croissance de la population ne suffit pas ; il faut encore connaître son effectif et sa structure par âge et par sexe ; ceci fait l’objet des recensements. Autrefois les recensements étaient faits périodiquement (tous les 10 ans) sur toute la France par l’INSEE. Depuis 2004 les recensements sont faits par les communes : tous les 5 ans pour les communes de moins de 10 000 habitants, par échantillonnage pour les communes de plus de 10 000 habitants. Il se fait en janvier et février de sorte qu’en fin d’année la commune disposera des données du recensement et de celles de l’état civil.  Le regroupement des données fourni par les communes permet de connaître la population totale de la France au moment du recensement mais aussi d’établir la pyramide d’âges de la population, c’est-à-dire le graphique qui détaille le nombre d’hommes et de femmes pour chaque classe d’âge de la vie ou cohorte : 0,1, 2, etc. (âges compris de 0 à 1 an, de 1 à 2 ans, de 2 à 3 ans, etc.)

Enfin, en combinant les données du recensement de l’année A à celles du nombre de naissances et de décès par classe d’âge relevés à la fin de l’année, on peut calculer pour chaque classe d’âge c et chaque sexe :

- Le taux de mortalité :

MAc = Nb de morts de la classe d’âge c / Nb d’individus au recensement de cette classe

- le taux de survie :

SAc = Nb de survivants de la classe d’âge c / Nb d’individus au recensement de cette classe 

- le taux de fécondité pour le sexe féminin :

             BAf = Nb de naissances de la classe d’âge f de procréation / Nb de femmes de cette classe d’âge.

Les taux SAc et BAf sont intéressants pour les démographes car ils permettent de calculer (dans le cas ou leur variation reste faible au cours du temps) l’évolution de la population masculine et féminine les années qui suivent le recensement.

l’indicateur conjoncturel de fécondité est la somme des taux de fécondité BAf par classe d’âge des femmes en âge de procréer de l’année A (de 15 à 50 ans). Il est égal, en 2024, à 1,8 nettement inférieur au taux 2,1 considéré comme le taux de stabilité d’une population (intuitivement un couple pour être remplacé doit avoir 2 enfants, mais il nait moins de filles (0,976) que de garçons (1,024), pour que toutes les mères en âge de procréer soient remplacées il faut un indicateur conjoncturel de fécondité supérieur à 2 soit 2,1 ; alors la population ne décroitra pas). Dès maintenant la population française diminuerait si ce n’était une compensation due à une espérance de vie très élevée donc un vieillissement de la population et une forte immigration.

La connaissance de la population réelle de notre pays souffre de deux lacunes : la méconnaissance de l’immigration incontrôlée et l’estimation par échantillonnage au recensement des communes de plus de 10 000 habitants.              

En quoi les herbivores s'opposent aux restaurations végétales ?

Lundi 5 Février 2024


La restauration de milieux dégradés ou le monde vivant ne peut plus se développer est quelquefois nécessaire, par exemple en montagne si l’on veut limiter l’érosion. La restauration peut aussi être aussi une volonté écologique de restitution d’un écosystème. Le monde vivant ne pouvant se développer qu’en disposant d’une source d’énergie, on va commencer par restaurer la végétation qui capte par photosynthèse l’énergie solaire et la transforme en énergie chimique (sucres). Cette énergie sera ensuite distribuée par les herbivores à tout l’écosystème.

On considère qu’un milieu peut retrouver sa couverture végétale par propagation naturelle si on supprime les causes de dégradation (déforestation, agriculture, invasion de plantes exotiques). La régénération est dans ce cas naturelle ou passive. On peut aussi semer des graines ou planter des arbres, la régénération est alors active.

La réussite d’une régénération végétale passive ou active nécessite une bonne adéquation des espèces végétales au milieu physique (sol, climat, disponibilité en eau), à l’environnement humain, mais l’expérience montre aussi qu’un facteur déterminant du succès est le contrôle de l’herbivorie (néologisme que nous garderons ici et qui signifie la consommation des végétaux par les herbivores). Des chercheurs* ont analysé des tests expérimentaux conduits dans 64 pays et ayant fait l’objet de 451 publications pour évaluer, sur des parcelles en restauration, l’effet des herbivores lorsqu’ils sont exclus, lorsqu‘on en ajoute, ou que l’on réintroduit des prédateurs. Nous donnons ici leurs principales conclusions.

Bien que les herbivores réduisent l’abondance de la végétation sur des sites naturels (32%) leur action est beaucoup plus importante sur des sites en restauration (52%) ; de ce fait la restauration y est plus lente et incomplète et nécessite souvent un contrôle des herbivores.

Alors que les herbivores augmentent la biodiversité dans les écosystèmes naturels en affaiblissant la compétitivité des espèces dominantes, ils la réduisent dans les sites en restauration. Cela tiendrait au fait que la productivité y étant moindre, les populations de plantes sont plus faibles ce qui facilite leur suppression.

Les écosystèmes dégradés se caractérisent par un plus grand nombre d’herbivores généralistes. Ils réduisent la diversité en supprimant très tôt les espèces de plantes qui se développent successivement.

Le climat (températures et pluviométrie moyennes annuelles) a un rôle modérateur clé sur l’effet des herbivores dans les sites en restauration alors qu’il est peu influent sur les sites non dégradés. Les températures élevées accroissent généralement  l’herbivorie ; la diversité spécifique est aussi affectée dans les sites en restauration lorsque le climat est chaud et sec.

La taille des herbivores joue un rôle important dans les milieux naturels pour le maintien des prairies ; leur exclusion y favorise le développement des arbres. Cet effet est exacerbé dans des sites en régénération. En outre les espèces natives y sont favorisées par rapport aux espèces exotiques.

En définitive la gestion de l’herbivorie doit être prise en compte dès que l’on envisage de régénérer un site dégradé. Il faut exclure ou réduire la présence des herbivores de grande taille en installant des barrières ou en les détournant, utiliser des insecticides contre les insectes herbivores ; ceci est valable pour les sites en restauration de petite taille. Pour les sites très grands il faut réintroduire les prédateurs.

 

*Changlin Xu et al. Science, 3 novembre 2023, N°6670, pp.589-592.


Les constellations de satellites.

 

Vendredi 5 Janvier 2024

 

Il s’agit d’un très grand nombre de petits satellites dispersés autour de la terre sur des orbites basses (entre 160km et 1000 km d’altitude) par plusieurs tirs de fusée, chaque tir emportant plusieurs satellites.

Ils répondent aux besoins de réfléchir des ondes électromagnétiques (ondes hertziennes)  émises par une station terrestre vers des récepteurs répartis sur toute la terre  (télévision, internet)  ou, réciproquement, par des émetteurs terrestres vers une station d’analyse (géolocalisation) ; enfin ils peuvent émettre ces ondes, ils servent alors de coordinateurs à l’intérieur même d’une constellation, ou bien ils envoient eux-mêmes des informations aux stations terrestres. Ils ont l’avantage de couvrir des zones difficiles d’accès et pour cela ils doivent être présents tout autour de notre planète. Leur présence en croissance démesurée fait l’objet d’une étude critique*  dont nous extrayons ici les principales informations.

Actuellement 4500 satellites de Starlink et 630 de OneWeb sont fonctionnels en orbite basse, mais le nombre de constellations de plus de 10 satellites ayant fait l’objet d’un dépôts à l’Union Internationale des Télécommunications (IUT) en attente d’une affectation de longueur d’onde a cru de manière exponentielle entre 2017 et 2022. A partir de données provenant de cet organisme, 300 constellations d’au moins 10 satellites  ont été déposées ce qui représente plus d’un million de satellites. Parmi elles,  90 auraient plus de 1000 satellites, 33 plus de 5000 et 8 plus de 10 000. La plus grande est Cinnamon-937 avec 337 320 satellites. Les dépôts ont été faits par la Chine (65), les Etats Unis (45), mais aussi le Rwanda (constellation Cinnamon-937), l’Allemagne, l’Espagne, la Norvège et la France.

Ces prises de position à l’IUT ne signifient pas que ces constellations seront toutes mises en orbite. Les Etats ou les Sociétés qui font les dépôts ont plusieurs stratégies en tête : faire une demande supérieure aux besoins afin d’attirer des investisseurs ou vendre des droits au spectre, accumuler des droits au spectre qu’ils pourront utiliser ensuite.   

La zone orbitaire basse de la terre risque d’être encombrée par un nombre considérable d’objets : satellites opérationnels, satellites abandonnés, corps de fusées résultant de tirs anciens et plusieurs milliers de débris détachés sans aucune trajectoire connue. Les morceaux de grande taille peuvent retomber au sol, ils sont potentiellement dangereux pour ceux qui y vivent ; les satellites opérationnels émettent de la lumière, leur trajectoire trace une ligne blanche sur les photos célestes prises la nuit au préjudice des astronomes. Enfin tous ces objets perturbent la radioastronomie par leurs pollutions électroniques.

Les auteurs de l’article pensent que les dépôts excessifs de demandes pour des constellations de satellites en vue de leur affecter une bande spectrale, est un problème. Mais il peut être résolu par l’IUT qui est en capacité de mettre à jour ou créer de nouvelles règles avec ses 193 Etats membres. Lors des précédentes Conférences Internationales relatives aux Radiocommunications des exigences concernant les mises en orbite de constellations satellitaires ont été adoptées : quel est le fabricant des satellites et quel sera l’organisme qui réalise le lancement (1997), dates limites de lancement de chaque fraction de la constellation après le premier dépôt de demande à l’IUT (2019), limites de la densité du flux émis et limites sur la déviation de l’altitude de trajectoire (2023). Cependant pour arrêter cette inflation de dépôts il faudrait des règles plus strictes : limites du nombre de satellites par constellation, taxes sur les dépôts.

 

*Andrew Falle et al. Science, 13 octobre 2023, N°6667, pp.150-152          

La niche écologique.

Mardi 5 Décembre 2023

 

Un individu est adapté au milieu dans lequel il vit ; c’est-à-dire qu’il  y trouve les conditions physiques (écarts thermiques, hygrométriques, éclairage), chimiques (salinité du sol pour les plantes, concentration en oxygène pour les animaux par exemple) et biologiques (nourriture) qui lui permettent de vivre et de se reproduire. Il occupe une niche écologique c’est-à-dire le lieu où toutes ces conditions sont à peu près réunies. Je dis « à peu près » car il possède pour chacune de ces conditions une possibilité au moins temporaire de survivre lorsque l’une de celles-ci s’éloigne quelque peu de la norme. Un renard par exemple peut survivre quelques jours sur ses réserves s’il ne trouve pas au jour le jour une de ses proies pour se nourrir. On peut imaginer mathématiquement chaque composante de la niche comme une dimension de celle-ci, l’ensemble de ses composantes étant un espace à n dimensions.

Précisons maintenant comment on peut caractériser une dimension de cet espace ; intéressons-nous au comportement d’un groupe d’individus de la même espèce (une orge sauvage par exemple : Hordeum murinum) sur une prairie naturelle de quelques ares environ (pour fixer les idées) dans lequel la teneur en eau du sol varie d’un lieu à l’autre. Quadrillons cet espace en sous espaces de 10 m2, mesurons la teneur moyenne en eau du sol pour chaque sous espace et comptons le nombre de plants d’Hordeum qui y vit. Si nous portons, sur un plan de coordonnées, en abscisse la variation croissante de la teneur en eau du sol et en ordonnées au nombre d’individus présents sur chaque sous espace, l’ensemble des points relevés permet d’établir une courbe qui traduit la capacité d’exploitation de l’eau du sol par ce groupe d’avoine sauvage. C’est une courbe en cloche (courbe de Gauss) qui caractérise la niche de l’espèce Hordeum sativum pour la teneur en eau du sol. Elle en donne en effet l’amplitude (minimum et maximum d’eau supportables)  et l’optimum (sommet de la courbe) là ou pousse le plus grand nombre de plants.

Sur le même espace, intéressons-nous à une autre espèce (la folle avoine : Avena fatua par exemple), si l’on établit aussi la courbe qui donne la relation entre la teneur en eau du sol et le nombre de plants de folle avoine dans chaque sous espace comme il a été fait précédemment pour l’orge sauvage, on obtient aussi une courbe en cloche de Gauss mais celle–ci pourra être décalée par rapport à celle de l’orge : à gauche si l’espèce résiste mieux à la sècheresse, à droite si elle a besoin de plus d’eau. Si les deux courbes se chevauchent partiellement c’est que, dans cette zone, leurs besoins en eau sont voisins et, dans ce cas, elles entrent en compétition. Si les deux courbes se  chevauchent totalement c’est que leurs besoins en eau sont identiques, la compétition est absolue et l’une des deux espèces peut éliminer l’autre.

La richesse en espèces d’une niche écologique est d’autant plus grande que chacune de ses dimensions n’oppose pas de limites au développement de certaines d'entre elles. Prenons le cas de la température si en saison froide la température de la niche devient fortement négative -40°C par exemple il ne pourra pas y avoir, dans ce milieu, d’espèces qui ne supportent pas ces températures. Nous aurons une végétation arctique et des animaux adaptés à ces froids : ours blancs, pingouin etc. La richesse biologique d’une niche est ainsi déterminée par la présence d’un facteur limitant dans l’une de ses dimensions. Les besoins du monde vivant, étant limités par des contraintes physiques, chimiques et biologiques, les  niches les plus riches se trouvent dans les zones tropicales là où leurs dimensions s’accordent le plus largement aux besoins de la vie.

La pollution lumineuse

Lundi 6 Novembre 2023

 

La pollution lumineuse est l’ensemble des effets négatifs produits par la lumière artificielle émise en période nocturne pour prolonger les activités humaines. Sa partie non contrôlée éclaire des zones extérieures naturelles qui seraient normalement à l’obscurité, elle peut être néfaste par son excès de brillance, par son spectre lumineux lorsque les longueurs d’ondes émises sont courtes (lumière bleue). Elle produit au-dessus des villes un dôme lumineux que l’on sait peu propice aux observations astronomiques.

L’ensemble du monde vivant est adapté au cycle lumineux solaire ; celui-ci a induit chez la plupart des espèces un rythme biologique journalier dit « circadien » La pollution lumineuse va altérer les signaux lumineux naturels et donc modifier le fonctionnement biologique qui s’était établi à la suite de l’alternance : nuit-jour. La revue Science consacre, dans son numéro du 16 juin dernier,  une étude bibliographique à ce sujet ; nous nous contenterons ici d’en extraire les principales observations qui ont été recueillies sur l’espèce humaine*.

On a très longtemps pensé que l’œil était uniquement l’organe du sens de la vision ; la rétine, expansion du nerf rétinien, est en réalité le siège de deux systèmes sensoriel interconnectés.  

-  La voie optique primaire, par ses cônes (vision diurne et colorée) et ses bâtonnets (vision crépusculaire et nocturne : noir et blanc), envoie des signaux sur la lumière environnementale à la région du cerveau responsable de la vision et des réflexes visuels,

- La voie rétinohypothalamique, par ses cellules ganglionnaires photosensibles contenant un pigment la mélanopsine, envoie des informations sur la lumière et l’obscurité au noyau du cerveau qui régule les rythmes circadiens, la sécrétion de la mélatonine (hormone de régulation des rythmes circadiens), les réflexes pupillaires à la lumière, la physiologie du sommeil, l’alerte et l’humeur.

Ces deux systèmes n’ont pas l’efficacité lumineuse optimale à la même longueur d’onde ; le premier, celui de la vision, a un optimum à 555 nm (nanomètres)  proche du rouge, le deuxième a un optimum de 480nm dans le bleu. Par ailleurs si sur une exposition de 6,5 heures à la lumière artificielle la voie optique primaire agit sur le cycle circadien et la sécrétion de la mélatonine ; au-delà, pour des expositions plus longues, c’est la voie rétinohypothalamique qui seule intervient   

L’être humain peut se protéger contre les effets de la pollution lumineuse externe, celle-ci n’affecte que les autres espèces vivantes ; peut-il être affecté par la pollution lumineuse qu’il produit pour ses propres besoins ? Nous sommes exposés de manière croissante à la lumière artificielle le soir jusqu’au coucher par les ordinateurs, les téléphones portables, la télévision, l’éclairage intérieur et éventuellement extérieur ; l’exposition excessive à la lumière artificielle fatigue les yeux, elle peut être à l’origine d’insomnies provoquées par des troubles du rythme circadien, de la suppression de la sécrétion de la mélatonine, d’anomalies du comportement (irritabilité) et d’anomalies physiologiques (battements du cœur, température du corps) enfin une baisse des performances cognitives, et psychomotrices. L’utilisation de plus en plus fréquente des LED, sources de lumière très brillante mais émettant dans le bleu c’est-à-dire dans les longueurs d’ondes auxquelles sont sensibles les cellules ganglionnaires de l’œil, questionne sur leur effet négatif possible.

 

*K. M. Zielinska-Dabkowska et al. Science, 16 juin 2023, N°6650, pp.1130-1135     

Les terres abandonnées, que deviennent-elles ?

 Jeudi 5 Octobre 2023


Si vous vous promenez dans la campagne vous remarquerez facilement des terres à l’abandon dont la culture a cessé. En montagne vous pouvez même discerner les vestiges de murettes soutenant d’anciennes terrasses qui ont été cultivées il y a longtemps. Mais l’abandon ne concerne pas que l’agriculture, on a abandonné des mines non rentables ou épuisées, des usines dont les produits ne correspondaient plus à la demande ou étaient trop chers, des pans de forêt. Que deviennent ces espaces abandonnés ? Des écologistes* se sont interrogés sur leur devenir ; voici leur principales observations.

L’abandon, selon les auteurs de l’article, correspond à la fin des activités humaines sur un espace quel qu’il soit alors que l’on n’avait, pour référence, que la fin des activités agricoles considérées acquises après 5 ans d’absence de culture. Depuis 1950, 400 millions d’hectares de terre environ ont été abandonnées, le phénomène est plus important dans l’hémisphère nord ou la dépopulation rurale a été très forte, où l’intensification agricole a contraint à l’abandon de terres pauvre, difficiles d’accès. Des contraintes dues à la dégradation du milieu physique peuvent aussi en être la cause : érosion, volcanisme, inondations, pollutions.

Comment l’abandon redessine-t-il le milieu naturel ? Alors que l’on veut soustraire de nouvelles zones à l’activité humaine pour accroître ce milieu, la réponse à cette question est primordiale. En fait l’effet est variable.

Sur une terre intensivement cultivée, appauvrie en biodiversité, sur une forêt surexploitée, sur une zone minière, disons sur une zone non construite, l’abandon est positif. Il bénéficie à la forêt et à la végétation par réensemencement provenant des espèces végétales les plus proches, il bénéficie aussi à l’habitat des oiseaux et à celui des invertébrés, il y aura un ensauvagement passif avec retour des grands herbivores et carnivores qui étaient présents dans le voisinage le plus proche. Toutefois un retour à la situation préexistante, avant la conversion agricole puis l’abandon, ne sera pas atteint passivement même après des siècles, et les terres abandonnées ne retrouvent pas leur statut initial.

Il peut être négatif lorsqu’il existait un équilibre entre une culture de subsistance humaine et un milieu naturel très peu affecté. La coévolution entre l’espèce humaine et le milieu naturel a créé une grande hétérogénéité d’habitat. L’abandon peut alors conduire à une perte d’espèces locales rares et à une homogénéisation du milieu.

L’abandon peut favoriser le développement de plantes invasives, il peut aussi produire un glissement vers de nouvelles communautés qui n’ont rien à voir avec la situation antérieure à l’activité humaine. Enfin le paysage va se refermer et rendre plus difficile la lutte contre les incendies qui à leur tour vont produire des cascades de modifications de la diversité spécifique. D’une manière générale la biodiversité peut tout aussi bien s’accroître que diminuer.

Comment accompagner un abandon de terres vers une biodiversité optimale ? Les auteurs ne donnent pas de réponse à cet important sujet. Ils font état du peu de travaux qui lui ont été consacrés ne serait-ce que par une cartographie globale sur l’étendue et la persistance de l’abandon ou l’importance et la direction de l’effet de l’abandon sur la biodiversité. Ils  invitent à leur meilleure prise en compte dans le futur.

*Organa N. Daskolova & Johannes Kamp, Science 12 Novembre 2023, N°6645, pp. 581-583.